Prediction of variable translation rate effects on cotranslational protein folding.

نویسندگان

  • Edward P O'Brien
  • Michele Vendruscolo
  • Christopher M Dobson
چکیده

The concomitant folding of a protein with its synthesis on the ribosome is influenced by a number of different timescales including the translation rate. Here we present a kinetic formalism to describe cotranslational folding and predict the effects of variable translation rates on this process. Our approach, which utilizes equilibrium data from arrested ribosome nascent chain complexes, provides domain folding probabilities in quantitative agreement with molecular simulations of folding at different translation rates. We show that the effects of single codon mutations in messenger RNA that alter the translation rate can lead to a dramatic increase in the extent of folding under specific conditions. The kinetic formalism that we discuss can describe the cotranslational folding process occurring on a single ribosome molecule as well as for a collection of stochastically translating ribosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy landscape theory for cotranslational protein folding

Abstract Energy landscape theory describes how a full-length protein can attain its native fold after sampling only a tiny fraction of all possible structures. Although protein folding is now understood to be concomitant with synthesis on the ribosome there have been few attempts to modify energy landscape theory by accounting for cotranslational folding. This paper introduces a model for cotra...

متن کامل

Understanding the influence of codon translation rates on cotranslational protein folding.

Protein domains can fold into stable tertiary structures while they are synthesized by the ribosome in a process known as cotranslational folding. If a protein does not fold cotranslationally, however, it has the opportunity to do so post-translationally, that is, after the nascent chain has been fully synthesized and released from the ribosome. The rate at which a ribosome adds an amino acid e...

متن کامل

Computational evidence that fast translation speed can increase the probability of cotranslational protein folding

Translation speed can affect the cotranslational folding of nascent peptide. Experimental observations have indicated that slowing down translation rates of codons can increase the probability of protein cotranslational folding. Recently, a kinetic modeling indicates that fast translation can also increase the probability of cotranslational protein folding by avoiding misfolded intermediates. W...

متن کامل

Translation and folding of single proteins in real time.

Protein biosynthesis is inherently coupled to cotranslational protein folding. Folding of the nascent chain already occurs during synthesis and is mediated by spatial constraints imposed by the ribosomal exit tunnel as well as self-interactions. The polypeptide's vectorial emergence from the ribosomal tunnel establishes the possible folding pathways leading to its native tertiary structure. How...

متن کامل

In vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.

A question of fundamental importance concerning protein folding in vivo is whether the kinetics of translation or the thermodynamics of the ribosome nascent chain (RNC) complex is the major determinant of cotranslational folding behavior. This is because translation rates can reduce the probability of cotranslational folding below that associated with arrested ribosomes, whose behavior is deter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012